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Abstract

A non-stationary monotone iterative method is proposed and analyzed for the quantum-corrected energy transport
model in nanoscale semiconductor device simulation. For the density-gradient equations, it is analytically and numerically
shown that the convergence rate of the method is optimal in the sense of Gummel’s decoupling iteration. This is a globally
convergent method in the sense that the initial guess can be taken as a lower or an upper solution which is independent of
applied voltages. The method integrates the monotone parameters, grid sizes, and Scharfetter–Gummel fitting in an adap-
tive and automatic way to treat the singularly perturbed nature of the model that incurs boundary, junction, and quantum
potential layers in the device.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In order to keep pace with the increasing speed of miniaturization of modern semiconductor technology, a
great variety of device models that account for quantum effects, accuracy, robustness, and efficiency in real-life
simulations have been intensively developed and tested in recent years, see e.g. [3–5,6,9–15,17,18,21,23,
25,26,28] and references therein. Among them, a class of macroscopic quantum mechanical models based
on the density-gradient (DG) theory of Ancona and Tiersten [1] have been shown to accurately simulate
multi-dimensional MOSFET devices with gate lengths ranging from 50 nm down to 6 nm [3,5,9–13,18,21,
23,25,28]. The DG theory is a continuum theory of quantum transport that exhibits the essential non-locality,
confinement, and tunnelling of quantum effects by generalizing the equation of state for an ideal electron gas
to include density-gradient dependences. In this paper, we consider in particular the quantum-corrected energy
transport model (QCET) proposed in [9] which is one of the most advanced DG models in the sense that it
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extends the commonly used quantum drift-diffusion (QDD) model [3,5,10,11,21,23,25,28] by including the
energy balance equations in order to take the hot electron effects into account.

Since the power supply voltage is slowly scaled as compared with the gate length, the local field strength
inside the device increases drastically and consequently incurs very large solution variations and sharp gradi-
ents. Moreover, the QCET model is a strongly coupled system of seven nonlinear partial differential equations
(PDEs) in which the Poisson equation and the DG equations are singularly perturbed in terms of the Debye
length [2] and the Planck constant [9,11,21], respectively. The singularities imply abrupt and thin boundary,
interior, and quantum potential layers [9] in the device. All of these physical and mathematical properties asso-
ciated with the model lead to various difficulties in solving numerically the device problem by appropriate dis-
cretizations such as the adaptive finite element method with a generalized Scharfetter–Gummel exponentially
fitting developed in [7], which is also employed in this paper. One of the difficulties is to accurately and effi-
ciently solve the nonlinear system of PDEs.

At functional level, there are two approaches to deal with this problem. One may solve the nonlinear system
either by Newton’s method that treats the coupled system as a whole or by Gummel’s method that decouples
the system into sub-systems. As noted in [2,11,24], Gummel’s method is very robust, better-conditioned, mem-
ory efficient, and widely used in semiconductor simulations but only yields a linear convergence [24]. Since the
system is even further enlarged by the DG equations, most multi-dimensional quantum-corrected models are
treated by Gummel’s method [9,11,21] as considered here.

For each Gummel’s iteration, we have to solve seven decoupled nonlinear PDEs for the QCET model. At
discrete level, each one of the seven decoupled nonlinear systems of algebraic equations can either be solved by
using Newton’s method or by the monotone iterative method proposed in [7,9]. As limited by the Gummel
iteration, the optimal convergence of the nonlinear solver is linear by either method. For device simulation,
the monotone iterative method is more robust than Newton’s method since it is globally convergent, highly
parallel, and very easy to implement, see [7,9] and references therein for more details. However, this method
will be slowly convergent if the monotone parameters are not properly chosen. We propose here an accelerated
monotone iterative method for the QCET model. It is optimal for the DG equations in the sense of Gummel’s
iteration. The main idea of the method is to set up a selection criterion of the monotone parameter for each
PDE. The monotone parameter is chosen to be a diagonal entry of the Jacobian matrix for most of the solu-
tion domain and is relaxed in the layer regions so that the resulting matrix of the linear system is an M-matrix.
This is a crucial condition to establish that the maximum principle is satisfied by the approximate carrier den-
sities which are therefore guaranteed to be non-negative throughout the domain. The selection criterion is
done automatically without any manual adjustment of relaxation parameters. In effect, the relaxation param-
eters (or equivalently the monotone parameters) are modified automatically with the adaptive grid sizes and
the Scharfetter–Gummel fitting. In summary, the monotone parameters, adaptive grid sizes, Scharfetter–
Gummel fitting, and two singular perturbation parameters are all tightly related to each other at the discrete
level so that the approximate solutions can be analyzed by the singular perturbation theory as that of [16]. We
do not provide any singular perturbation analysis in this paper. Nevertheless, our numerical results demon-
strate that all approximate solutions of the decoupled system are uniformly convergent as proved in [16]
for the classical DD model.

The plan of the paper is as follows. A short review of the DGET model is stated in Section 2. In Section 3,
we present the accelerated monotone iterative method. Starting with an upper solution as the initial guess, it is
also shown in this section that the method is globally convergent and optimal in the sense of Gummel’s iter-
ation for the DG equations. Section 4 presents our numerical experiments on a MOSFET device structure to
demonstrate the accuracy and efficiency of the method.
2. The quantum-corrected energy transport model

Based on the density-gradient theory [1], we have proposed in [9] the following QCET model:
� D/ ¼ F ð/Þ; ð2:1Þ
� r � Jn ¼ Rðu; vÞ; ð2:2Þ
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�r � Jp ¼ �Rðu; vÞ; ð2:3Þ
� Dfn ¼ ZnðfnÞ; ð2:4Þ
� Dfp ¼ ZpðfpÞ; ð2:5Þ
� r � Gn ¼ RnðgnÞ; ð2:6Þ
� r � Gp ¼ RpðgpÞ; ð2:7Þ
with the seven unknown functions /,
u ¼ exp
�un

V T

� �
; ð2:8Þ

v ¼ exp
up

V T

� �
; ð2:9Þ

fn ¼
ffiffiffi
n
p

; ð2:10Þ
fp ¼

ffiffiffi
p
p

; ð2:11Þ

gn ¼ T n exp � 5un

4 V T

� �
; ð2:12Þ

gp ¼ T p exp
5up

4V T

� �
; ð2:13Þ
and the auxiliary relations
n ¼ nI exp
/þ /qn

V T

� �
u; ð2:14Þ

p ¼ nI exp
�/� /qp

V T

� �
v; ð2:15Þ

E ¼ �r/; ð2:16Þ

/qn ¼ V T lnðf2
nÞ � V T lnðunIÞ � /; ð2:17Þ

/qp ¼ �V T lnðf2
pÞ þ V T lnðvnIÞ � /; ð2:18Þ

Jn ¼ �qlnrð/þ /qnÞ þ qDnrn ¼ qDnnI exp
/þ /qn

V T

� �
ru; ð2:19Þ

Jp ¼ �qlprð/þ /qnÞ � qDnrn ¼ �qDpnI exp
�/� /qp

V T

� �
rv; ð2:20Þ

Gn ¼ jn exp
5un

4V T

� �
rgn; ð2:21Þ

Gp ¼ jp exp �
5up

4V T

� �
rgp; ð2:22Þ

F ð/Þ ¼ qnI

es

v exp
�/� /qp

V T

� �
� u exp

/þ /qn

V T

� �� �
� qðNþD � N�AÞ

es

; ð2:23Þ

Rðu; vÞ ¼
qðneqpeq � npÞ

s0
n p þ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq

p
exp et�ei

kBT

� �� �
þ s0

p nþ ffiffiffiffiffiffiffiffiffiffiffiffineqpeq
p

exp et�ei
kBT

� �� � ; ð2:24Þ

ZnðfnÞ ¼
fn

2bn

�V T lnðf2
nÞ þ V T lnðunIÞ þ /

� �
; ð2:25Þ

ZpðfpÞ ¼ �
fp

2bp

V T lnðf2
pÞ � V T lnðvnIÞ þ /

h i
; ð2:26Þ
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RnðgnÞ ¼ Jn � E� n
xn � x0

snx

� �
; ð2:27Þ

RpðgpÞ ¼ Jp � E� p
xp � x0

spx

� �
; ð2:28Þ
where / is the electrostatic potential, n and p the electron and hole concentrations, un and up the general-
ized quasi-Fermi potentials, V T the thermal voltage, T n and T p the electron and hole temperatures, nI the
intrinsic carrier concentration, /qn and /qp the quantum potentials, E the electric field, Jn and Jp the elec-
tron and hole current densities, q the elementary charge, ln and lp the field-dependent electron and hole
mobilities, Dn and Dp the electron and hole diffusion coefficients expressed by the Einstein relation with
the mobilities, jn and jp the heat conductivities, es the permittivity constant of the semiconductor, N�A
and NþD the densities of ionized impurities, snx and spx the carrier energy relaxation times, x0 the thermal
energy, xn and xp the carrier average energies, and bn ¼ �h2

12m�nq and bp ¼ �h2

12m�pq the material parameters mea-
suring the strength of the gradient effects in the electron gas with �h being the reduced Planck constant and
m�n and m�p being the effective masses of electron and hole [1]. Note that each one of the PDEs (2.1)–(2.7)is
semilinear and self-adjoint with respect to its own unknown function in the ordering of the variables /, u, v,
fn, fp, gn, and gp. The model system is associated with a set of Dirichlet and Neumann boundary conditions
(BCs) for various semiconductor device structures as described in [7,9] where a detailed description of phys-
ical parameters, doping profiles, generation–recombination models, and mobility models etc. can also be
found. In particular, we consider here a MOSFET device as illustrated by Fig. 1 where the junction depth
is 20 nm, the lateral diffusion under gate is 8 nm, the channel length is 34 nm, and the gate oxide thickness is
2 nm.

The system (2.1)–(2.7) models the stationary state of electron flow through the device by augmenting the
macroscopic energy transport model (2.1)–(2.3), (2.6), (2.7) [7] with the density-gradient Eqs. (2.4) and (2.5)
[1]. The square roots of carrier densities in (2.10) and (2.11) were introduced in [23] as extra unknown func-
tions to define the quantum (Bohm) potentials (2.17) and (2.18) by means of the generalized quasi-Fermi
potentials un and up [9,23]. These quantum potentials represent the first order quantum corrections of the
drift-diffusion fluxes as shown in (2.19) and (2.20).

Note particularly that the right-hand side nonlinear functionals in (2.1)–(2.7), namely (2.23)–(2.28), are all
expressed in terms of their respective unknown variables to illustrate that the functional derivative with respect
Fig. 1. Geometry of an n-MOSFET device.



6230 R.-C. Chen, J.-L. Liu / Journal of Computational Physics 227 (2008) 6226–6240
to its variable for can be straighforwardly evaluated. All functionals are nonlinear due to the Slotboom-type
transformations (2.8), (2.9), (2.12) and (2.13). Furthermore, these transformations also result in that all diver-
gence operators in the left-hand sides of the system (2.1)–(2.7) are self-adjoint.

Due to the self-adjointness, each PDE with its prescribed BCs results in a similar nonlinear algebraic system
from the adaptive finite element method. Moreover, it has been shown that the classical Gummel algorithm,
i.e., a successively decoupling procedure for solving the DD model can be extended to the QCET model in [9]
and the QCDD model in [11]. It is therefore sufficient to restrict our discussion below to only one of the decou-
pled PDEs. From our numerical experience on the QCET model and from the fact that the PDEs (2.4) and
(2.5) are singularly perturbed with respect to the Planck constant, these two equations suffer from more ill-
conditioning of the corresponding algebraic systems than that of other equations and consequently from
slower convergence of the nonlinear iteration. We thus pay attention particularly to these two equations
for our proposed monotone scheme. All other PDEs can be treated and analyzed in a similar way for which
we refer to [9] for a detailed derivation of the corresponding Jacobian matrices.

Let X � R2 denote the bounded domain of the silicon in Fig. 1. The boundary oX ¼ oXD [ oXN is piecewise
smooth consisting of Dirichlet oXD and Neumann oXN ¼ AB [ EF parts. The Dirichlet part corresponds to
the Ohmic contacts oXO ¼ BC [ DE [ AF and the silicon/oxide interface oXI ¼ CD, i.e., oXD ¼ oXO [ oXI.
The BCs for the variables fn and fp are prescribed as
f2
n ¼

1

2
ðNþD � N�AÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþD � N�AÞ

2 þ 4n2
I

q	 

on oXO; ð2:29Þ

fp ¼ nI=fn on oXO; ð2:30Þ
fp ¼ fn ¼ 0 on oXI; ð2:31Þ
and
ofn

on
¼ ofp

on
¼ 0 on oXN; ð2:32Þ
where n is an outward normal unit vector to oXN. The BC (2.31) on the interface is so chosen that we do not
consider tunneling effects [5] [9] across the interface. The monotone method presented below is not constrained
by this simplification.
3. An accelerated monotone iterative method

The adaptive finite element method and the Scharfetter–Gummel exponential fitting scheme of [7] are used
to approximate the boundary value problem (2.4), (2.29)–(2.32) and yield a system of nonlinear algebraic
equations in matrix form as
AU ¼ F ðUÞ; ð3:1Þ

where U � ðf1; . . . ; fNÞT is an unknown vector with fi representing an approximation of fn at the mesh point
ðxi; yiÞ 2 X, i.e., fi � fnðxi; yiÞ, and F ðUÞ � ðF 1ðf1Þ; . . . ; F NðfNÞÞT is a nonlinear vector in U defined as
F iðfiÞ ¼
ZnðfiÞ if ðxi; yiÞ 2 X;

nI

fpðxi;yiÞ
if ðxi; yiÞ 2 oXO;

0 if ðxi; yiÞ 2 oXN [ oXI:

8><
>: ð3:2Þ
Note that the matrix A ¼ ½aij�N	N is diagonally dominant, i.e., jaiijP
P

j 6¼ijaijj for all i and the strict inequality
holds for at least one i as proved in [7] and hence it is an M-matrix (an inverse-positive matrix).

To develop monotone iterative schemes for (3.1), we need a pair of ordered lower and upper solutions
U 6 U such that
AU 6 F ðUÞ and AU P F ðUÞ; ð3:3Þ

where the inequality between two vectors is always in the componentwise sense. Given any ordered pair, we
define the sectors
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hU ;Ui � fW 2 RN ; U 6 W 6 Ug; ð3:4Þ
hfi; fii � fwi 2 R; fi 6 wi 6 fig ð3:5Þ
and stationary monotone parameters ki such that
ki � max � oF iðwiÞ
ofi

; wi 2 hfi; fii
� �

; ð3:6Þ
or in matrix form
K � diagðkiÞ ð3:7Þ

for 1 6 i 6 N . The stationary monotone iterative method for (3.1) generates a sequence of approximate solu-
tions fU ðmÞS g of an exact solution U by iteratively solving the linearized system
ðAþ KÞU ðmþ1Þ
S ¼ F ðU ðmÞS Þ þ KU ðmÞS ð3:8Þ
for m ¼ 0; 1; 2; . . .. The initial iterate is chosen as either U ð0ÞS ¼ U or U ð0ÞS ¼ U . The method is said to be sta-

tionary if all monotone parameters are kept fixed throughout the entire solution process and non-stationary

otherwise.
The monotone iterative method has been widely used to show existence of solutions of some elliptic non-

linear PDEs. It may be used whenever a maximum principle is available. It depends on finding a super-solu-
tion (an upper solution for algebraic equations considered here), a sub-solution (a lower solution), and a
convenient constant k (a constant matrix K). The monotone iterative method reduces to Newton’s method
if the monotone parameter is chosen to be the first derivative of the nonlinear functional of the PDE (the Jaco-
bian matrix of algebraic system). Obviously, (3.8) is Newton’s iteration if the matrix K is the Jacobian matrix

� oZnðfðmÞi Þ
ofðmÞj

	 

. A drawback of Newton’s method is its sensitivity to the initial guess. Another major difficulty for

semiconductor device simulation using Newton’s method is that the Jacobian matrix is highly unstable when
the applied biases are large [2], i.e., far away from thermal equilibrium which is the case considered here. In
contrast, the monotone iterative generates a monotonically convergent sequence from any one of a wide class
of initial iterates. And the matrix K can be simply a constant diagonal matrix.

With the nonlinear functional ZnðfnÞ in (2.25) and the matrix A being an M-matrix, it has been shown in [9]
that the sequence fU ðmÞS g converges monotonically to an exact solution. The convergence is also global in the
sense that the lower or upper solution can be easily determined by means of the charge neutrality condition
which is independent of applied voltages [9]. However, the convergence is rather slow as shown in the next sec-
tion. We propose here an accelerated method by properly choosing the monotone parameters for each iteration.
The method is non-stationary since the parameters are automatically updated in each iteration as follows.

We observe from (2.25) that
oZn

ofn

¼ �1

2bn

V T lnðf2
nÞ � V T lnðuniÞ � /

� �
� fn

2bn

2V T �
1

fn

	 

; ð3:9Þ

¼ �1

2bn

V T lnðf2
nÞ � V T lnðuniÞ � /þ 2V T

� �
; ð3:10Þ

¼ �1

2bn

/qn þ 2V T

� �
; ð3:11Þ

o
2Zn

of2
n

¼ �1

2bn

2V T �
1

fn

	 

< 0; ð3:12Þ
where (3.11) follows from (2.17). Since the monotone parameters ki in (3.6) are determined by the functional
derivative (3.11), it is critical to study their numerics closely. We first note that the thermal voltage V T and the
microscopic parameter bn are constant throughout the domain if the parabolic effective mass approximation is
assumed. This microscopic constant is a singular perturbation parameter for the DG Eq. (2.4) with respect to
the Planck constant �h [11,21]. It is thus evident that the convergence behavior of the monotone iterative
method is essentially harnessed by the quantum (Bohm) potential /qn. As shown by Fig. 3 in the next section,
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the quantum potential has a very thin boundary layer near the silicon/oxide interface. In fact, it is only a frac-
tion of the length scale of the inversion layer. Since we use both the adaptive finite element method and the
Scharfetter–Gummel fitting method to capture the layer as those analyzed in [16] for the Poisson Eq. (2.1) by
means of the singular perturbation theory, it can hence be proved that these methods are uniformly conver-
gent and layer jumps are automatically resolved for the DG Eqs. (2.4) and (2.5).

We are however concerned here with the convergence rate of the nonlinear solver. From Fig. 3, we observe
that the electron quantum potential /qn is negative in the layer with the average value about �0.15 V whereas
V T ¼ 0:0259 V and is non-negative in the rest part of the domain. This means that (3.11) will be negative for a
very large portion of the domain except the thin layer region. It consequently motivates us to choose the
monotone parameters as
kðmÞi ¼ � oF iðfðmÞi Þ
ofðmÞi

if � oF iðfðmÞi Þ
ofðmÞi

> 0; ð3:13aÞ

kðmÞi ¼ max � oF iðwiÞ
ofðmÞi

; wi 2 hfi; fii
( )

otherwise; ð3:13bÞ
which are a hybrid form of the stationary case around the layer region and the non-stationary case elsewhere.

The non-stationary parameters are the diagonal entries of the Jacobian matrix � oZnðfðmÞi Þ
ofðmÞj

	 

. In matrix form, we

denote
KðmÞN ¼ diagðkðmÞi Þ: ð3:14Þ

Our new monotone iterative method is the following iteration:
ðAþ KðmÞN ÞU
ðmþ1Þ
N ¼ F ðU ðmÞN Þ þ KðmÞN U ðmÞN ð3:15Þ
with the initial guess as above. Since the matrix A is an M -matrix and the matrix KðmÞN is a non-negative diag-
onal matrix, the resulting approximation of fn ¼

ffiffiffi
n
p

satisfies the maximum principle so that the computed
quantities are non-negative and hence are physically feasible. Furthermore, if we assume that the Slotboom
variable u and the electrostatic potential / are given exactly in (2.25), then (2.4) is an elliptic semilinear
PDE with respect to the unknown function fn.

The convergence analysis of the sequence fU ðmÞN g generated by (3.15) then follows the standard analysis for
the monotone iterative method applied to the discrete semilinear PDEs as given in [7,8,19,20,27]. We now sum-
marize all the above conditions that are related to the convergence results of the proposed method as follows:

(1) A is an M-matrix,
(2) an ordered pair of lower and upper solutions (3.4) exists,
(3) the matrices (3.14) are non-negative,
(4) the variables u and / are given exactly in (2.25),

(5)
oZnðfðmÞi Þ

ofðmÞi

< k0

� �
where k0 is the smallest positive eigenvalue of A,

(6) (3.12) is satisfied.

The following two theorems phrased in our model setting have been proven in [27] where the quadratic con-
vergence analysis is extended from [20] to include a larger class of nonlinear PDEs. The error analysis is cast in
the infinity norm which is also used for our numerical results in the next section.

Theorem 3.1. If Conditions (1)–(4) hold, then the sequence fU ðmÞN g with U ð0ÞN ¼ U converges monotonically from

below to a minimal solution U �N of (3.1) in hU ;Ui and the sequence fU ðmÞN g with U ð0ÞN ¼ U converges
monotonically from above to a maximal solution U�N of (3.1) in hU ;Ui. Moreover,
U 6 U ðmÞN 6 U ðmþ1Þ
N 6 U �N 6 U �N 6 U ðmþ1Þ

N 6 U ðmÞN 6 U ð3:16Þ

for all m ¼ 0; 1; 2; 3; . . . If, in addition, Condition (5) holds for all i ¼ 1; 2; . . . ;N ; then U �N ¼ U �N ¼: U � is the

unique solution of (3.1).
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Theorem 3.2. If Conditions (1)–(6) hold, then
kU ðmþ1Þ
N � U �k1 6 rkU ðmÞN � U �k2

1 8m ¼ 0; 1; 2; 3; . . . ; ð3:17Þ

where
r ¼ c1kðAþ c2IÞ�1k1; ð3:18Þ

c1 ¼ max
i

max
o2F iðwiÞ

of2
i


 : wi 2 hfi; fii

( )
; ð3:19Þ

c2 ¼ min
i

min � oF iðwiÞ
ofi

: wi 2 hfi; fii
� �

: ð3:20Þ
Here the first maximum (or minimum) is obtained for the index i ranging all over the gird points whereas
the second maximum (or minimum) is evaluated by taking the variable wi within the sector hfi; fii.

Several remarks on the method and convergence results follow.

Remark 3.1. We first note that it is impossible to obtain the quadratic convergence if we take the lower
solution U as the initial guess since the nonlinear functional ZnðfnÞ is concave down as shown in (3.12).
Moreover, in solving the whole system (2.1)–(2.7) by means of Gummel’s iteration, the optimal convergence is
linear [24] instead of quadratic since it is impossible to fulfill Condition (4). These indeed agree with our
numerical experiments below.

Remark 3.2. It is well known that the continuous and the discrete QDD model may admit multiple solutions
and that uniqueness can only be proved for the case near the thermal equilibrium state [21,22]. Although the
mathematical analysis of the QDD model is in a rather mature state [21], it is mostly based on the small bias-
ing conditions. We are interested in the global convergence of the QCET model in the sense of the upper or
lower solution for more general biasing conditions. Following (3.11), Condition (5), and our numerical exper-
iments, the above analysis in discrete setting may motivate a future analysis on the questions of existence, mul-
tiple solutions, and uniqueness of the model with practical biasing voltages in continuous setting.
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Fig. 2. The numerical solution UN for fn.
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Remark 3.3. Stability and conditioning are two of most important issues in developing numerical methods. In
this paper, we use the standard linear finite elements with the Scharfetter–Gummel fitting scheme for all the
unknown functions in (2.1)–(2.7). We refer to [7] for a very detailed account for the stability and conditioning
of our methods when compared with other methods such as the mixed FEM for non-self-adjoint DD or ET
models. We focus here the novel features on these issues specifically for the DG Eqs. (2.4) and (2.5) as
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Table 1
Number of monotone iterations converging to U �S and U �N for fn

Gummel iteration 1 2 3 4 5 6 7 8 9 10

U�S 120 39 31 23 18 15 13 10 8 6
U�N 24 12 12 11 10 8 6 5 5 4

100 101 102

10-4

10-3

10-2

Stationary Case

Nonstationary Case 

Iteration No.

St
ep

Er
ro

r

Fig. 5. The step error versus the number of iteration for fp.

Table 2
Number of monotone iterations converging to U �S and U �N for fp

Gummel iteration 1 2 3 4 5 6 7 8 9 10

U�S 123 52 37 29 23 22 22 24 22 22
U�N 50 22 18 18 16 13 7 3 3 3

Table 3
Rate of convergence of UN for fn

Monotone iteration (m) kU ðmÞN � U �k1 R

1 9.0575e+009
2 7.7524e+009
3 4.0921e+009 4.10657
4 2.1913e+009 0.977493
5 1.1863e+009 0.982536
6 6.6188e+008 0.950875
7 3.8266e+008 0.939037
8 2.2492e+008 0.969823
9 1.3271e+008 0.992805

10 8.5969e+007 0.822967
� � � � � � � � �
16 9.6363e+006 1.00468
17 6.6032e+006 1.00371
18 4.5237e+006 1.00064
19 3.0936e+006 1.00468
20 2.1163e+006 0.999135
21 1.4547e+006 0.987366
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compared with the recent results in the literature. First of all, it has been observed in [28] that when solving the
QDD model as a coupled system by Newton’s method the convergence behavior is even worse than that for
solving the Schrödinger–Poisson system in 1D case. In [11], a suitable lumping procedure and a damping
parameter are devised for the damped Newton method for solving the QDD model by Gummel’s iteration.
For each Gummel iteration, a stability criterion for preserving the maximum principle is checked to determine
the damping parameter which is a constant value throughout the silicon domain. The convergence rate is, of
course, not quadratic and deteriorates as the Bohm potential gets larger [11]. This in principle verifies our
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Fig. 6. The step error versus the number of iteration for /. Only the non-stationary method successfully converged to correct solutions.
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Fig. 7. The step error versus the number of iteration for u. Errors are indistinguishable between two cases.



R.-C. Chen, J.-L. Liu / Journal of Computational Physics 227 (2008) 6226–6240 6237
formula (3.11) by which the monotone parameters (3.13) are instead determined not only iteration-by-itera-
tion but also node-by-node (position dependence). The lumping procedure is not required for our method.
In short, our method integrates the monotone parameters, grid sizes, and Scharfetter–Gummel fitting in an
adaptive and automatic way to treat the singularly perturbed nature of the model.
4. Numerical results

In our numerical experiments with the proposed method, we consider the device of Fig. 1 with the applied
voltages V S ¼ 0, V D ¼ 1:0 V, V B ¼ 0, and V G ¼ 0:8 V on the source, drain, bulk, and gate contacts, respec-
tively. The device has an elliptical 1019 cm�3 Gaussian doping profiles in the source and drain regions and
1016cm�3 in the p-substrate region.

The whole system (2.1)–(2.7) has been solved by using the adaptive finite element and Gummel’s iteration
algorithms presented in [9] with both stationary and non-stationary monotone iterative methods. We first
present the numerical results of the DG Eqs. (2.4) and (2.5) in more details.

The stopping criterion for the outer (Gummel) loop and the inner (monotone) loop is set to keðkÞk1 6 0:1V T

and to keðmÞk1 6 0:001V T, respectively, where k ¼ 0; 1; 2; . . . is the Gummel iteration index and
keðmÞk1 � kU ðmÞ � U ðm�1Þk1 is called the monotone step error [9]. The initial guesses are taken as either an
upper solution U ð0Þ ¼ U ¼ 1010 cm�6 for fn and U ð0Þ ¼ U ¼ 109 cm�6 for fp or a lower solution
U ð0Þ ¼ U ¼ 102 cm�6 for fn and U ð0Þ ¼ U ¼ 10 cm�6 for fp. Here the notation U ¼ c means that all compo-
nents in the vector U are equal to c. The stationary monotone parameters (3.6) can be easily computed by
the formula (3.10) where the variable fn is substituted by the upper solution and other variables are determined
under the charge neutrality condition. We obtained the convergence sequences as predicted by Theorem 3.1
for both stationary and non-stationary cases. We also ran various cases with different biasing conditions
and got similar results as the present one.

The approximate solution of fn in logarithmic scale and the quantum potential /qn at the 10th Gummel
iteration are given in Figs. 2 and 3. As shown by Fig. 4 (with Table 1 in numbers) and Fig. 5 (with Table 2),
the convergence rate of the non-stationary method is much faster than that of the stationary method.

In order to study the convergence order, we define the rate of convergence as
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Fig. 8. The step error versus the number of iteration for v. Errors are indistinguishable between two cases.
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R ¼ logðkU ðm�1Þ
N � U �k1Þ � logðkU ðmÞN � U �k1Þ

logðkU ðm�2Þ
N � U �k1Þ � logðkU ðm�1Þ

N � U �k1Þ
;

where the exact solution is assumed as U � � U ð24Þ
N . Table 3 shows that the convergence order is linear as ana-

lyzed above.
We next present the convergence results for the rest of the system, namely, Eqs. (2.1)–(2.3), (2.6), (2.7) with

the variables /, u, v, gn, and gp as shown in Figs. 6–10, respectively.
From these results, we note that the performance of the stationary and non-stationary methods is almost

the same for u, v, gn, and gp except for / for which the stationary method fails to converge to correct approx-
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Fig. 10. The step error versus the number of iteration for gp.
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imate solutions in our simulations. In other words, we did not obtain physically meaningful solutions for the
entire system (2.1)–(2.7) when the stationary method is used. Therefore, the non-stationary method not only
leads to correct solutions but also accelerates the computation for the whole system when compared with the
stationary method.

5. Conclusion

We have proposed and analyzed a non-stationary iterative monotone method for the quantum-corrected
energy transport model [9]. It is a global method for the density-gradient equations in the sense that the initial
guess can be taken as an upper or a lower solution which is independent of applied voltages. The key com-
ponent of the method is to set up a selection criterion such that the monotone parameters are the diagonal
entries of the Jacobian matrix in most part of the domain and the stationary values in the thin layer part.
The method integrates the monotone parameters, grid sizes, and Scharfetter–Gummel fitting in an adaptive
and automatic way to treat the singularly perturbed nature of the model. Its convergence rate is optimal in
the sense of Gummel’s iteration.
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